
Quantum Recurrent Architectures for
Natural Language Processing

Stephen Clark

CLASP, University of Gothenburg

6 September 2023

Quantum Computing

Talk Outline

1. Introduction to quantum computing / quantum circuits
2. Application to sequence classification

a. our quantum RNN architectures
b. sentiment analysis experiments

The State of a Classical Bit

0

The State of a Classical Bit

1

The State of a Qubit

superposition

The State of a Qubit

superposition

amplitudes

Measuring a Qubit

with probability

with probability

superposition

Measuring a Qubit (scalar output)

with probability

with probability

1

-1

superposition

Measuring a Qubit (many times)

The Bloch Sphere Representation of a Qubit

https://en.wikipedia.org/wiki/Bloch_sphere

The Bloch Sphere Representation of a Qubit

https://en.wikipedia.org/wiki/Bloch_sphere

“The Collapse of the Wave Function”

https://en.wikipedia.org/wiki/Bloch_sphere

The Bloch Sphere Representation of a Qubit

https://en.wikipedia.org/wiki/Bloch_sphere

“The Collapse of the Wave Function”

https://en.wikipedia.org/wiki/Bloch_sphere

Unitary Transformations of a Qubit

1-Qubit Quantum Gates

quantum Not gate

1-Qubit Quantum Gates

quantum Not gate acts linearly

1-Qubit Quantum Gates

Pauli Z Gate

1-Qubit Quantum Gates

Pauli Z Gate rotates about
the Z axis

The State of Many Qubits

Measuring Many Qubits

Measuring Many Qubits

Measuring Many Qubits

Measuring Many Qubits

Entangling Qubits

Controlled NOT gate

Entangling Qubits

Controlled NOT gate

Entangling Qubits

Controlled NOT gate

Entangling Qubits

Controlled NOT gate

Entangling Qubits

Controlled NOT gate

Entangling Qubits

Controlled NOT gate acts linearly

Quantum Circuits

Parameterised Quantum Circuits (PQCs)

Talk Outline

1. Introduction to quantum computing / quantum circuits
2. Application to sequence classification

a. our quantum RNN architectures
b. sentiment analysis experiments

Recurrent Neural Networks (RNNs)

From Colah’s blog: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Angle Encoding for Words

 w = (Rx1, Rx2, Ry3, Ry4, Rx5, Rx6)

Angle encoding

Angle Encoding for Words

 w = (Rx1, Rx2, Ry3, Ry4, Rx5, Rx6)

classical embedding w quantum state |w>

qRNN Take One

rPQCwPQC

wPQC

rPQC

w0 w1 w2… wi … wn

wPQC

…rPQC

qRNN Take One

rPQCwPQC

wPQC

rPQC

w0 w1 w2… wi … wn

wPQC

…rPQC

tensor product

qRNN Take One

wPQC

wPQC

rPQC

w0

…

rPQC

rPQC

wPQC

discarding

w1 w2… wi … wn

qRNN Take One

wPQC

wPQC

rPQC

w0

…

rPQC

rPQC

wPQC

discarding - “measure and ignore”

w1 w2… wi … wn

mixed state

qRNN Take Two

wPQC

w0 w1 … wi … wn

…wPQC

qRNN Take Two

wPQC

(Rx1, Rx2, …, Rz5, …, CRz9, …)

…wPQC

Affine

w1

Affine

w0

Output

…

PQC

w0 w1 … wi … wn

 PQC

Probabilistic Output

0.5(<M> + 1) P(+ve)

Probabilistic Output for Training

0.5(<M> + 1) P(+ve)

Logits Output

logit(+ve)

logit(-ve)

Neural Output

logit(+ve)

The Task

● Sentiment analysis (Rotten Tomatoes dataset)
● 8,530 training examples (well balanced); 1,066 dev examples
● Simple binary classification task

1
1

0
0

Baseline / Goal

● Goal is not to beat the s-o-t-a
● Goal (at this stage) is to be competitive with a classical vanilla RNN

Hybrid Toolkits

Hybrid Toolkit

● Requirements for classical simulation:
○ easily interfaces with PyTorch (or TensorFlow, JAX, …)
○ fast to train on real-world datasets
○ accommodates batching
○ essentially PyTorch ML library with complex number linear algebra

“Stairs” Architecture in Practice

● We added density matrices to TorchQuantum (for mixed states)
● Choice of PQC:

“Stairs” Architecture in Practice

PQC

 w0 w1 … wi … wn

…PQC

logit(+ve)

logit(-ve)

Example Experimental Settings

Affine

100D

optimiser = Adam
learning_rate = 0.001
batch_size = 200
emb_dropout = 0.5
early_stopping = True

A14
4 wires

Results on RT Test Set

4 wires Acc

Classical RNN 77.2

“Flat” 77.9

“Stairs” 79.5

Classical GRU 78.7

Classical LSTM 79.4

LSTM (Dai and Le, 2015) 79.7

Learning Curve

NVidia A30 GPU, PyTorch 1.12:

~5 secs / epoch for 1 wire (pure state)
~11 secs / epoch for 2 wires (pure state)
~14 secs / epoch for 4 wires (pure state)
~26 secs / epoch for 8 wires (pure state)

Where’s the (Potential) Advantage?

Non-linear mapping

Linear (unitary) transformations happen in this
(potentially very large) space

So What’s the Current State of Quantum Hardware?

Future Work

● Apply the models to more tasks
○ sequence labelling, language modelling, translation, …

● Apply pre-training / fine-tuning paradigm
● Develop more hybrid architectures

○ based on CNNs (e.g. MERA-like), transformers, …
● Run on quantum hardware

The Oxford Hybrid NLP Team

Wenduan Xu, Konstantinos Meichanetzidis, Douglas Brown, Gabriel Matos,
Charlie London, Richie Yeung, Carys Harvey, Nikhil Khatri, Stephen Clark

The Future is (Almost) Here

