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Quantum Computing



Talk Outline

1. Introduction to quantum computing / quantum circuits
2. Application to sequence classification

a. our quantum RNN architectures
b. sentiment analysis experiments
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Measuring a Qubit
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Measuring a Qubit (scalar output)
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Measuring a Qubit (many times)



The Bloch Sphere Representation of a Qubit

https://en.wikipedia.org/wiki/Bloch_sphere



The Bloch Sphere Representation of a Qubit

https://en.wikipedia.org/wiki/Bloch_sphere



“The Collapse of the Wave Function”

https://en.wikipedia.org/wiki/Bloch_sphere



The Bloch Sphere Representation of a Qubit

https://en.wikipedia.org/wiki/Bloch_sphere



“The Collapse of the Wave Function”
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Unitary Transformations of a Qubit



1-Qubit Quantum Gates

quantum Not gate



1-Qubit Quantum Gates

quantum Not gate acts linearly



1-Qubit Quantum Gates

Pauli Z Gate



1-Qubit Quantum Gates

Pauli Z Gate rotates about 
the Z axis



The State of Many Qubits



Measuring Many Qubits
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Entangling Qubits

Controlled NOT gate



Entangling Qubits

Controlled NOT gate



Entangling Qubits

Controlled NOT gate



Entangling Qubits

Controlled NOT gate



Entangling Qubits

Controlled NOT gate



Entangling Qubits

Controlled NOT gate acts linearly



Quantum Circuits



Parameterised Quantum Circuits (PQCs)



Talk Outline

1. Introduction to quantum computing / quantum circuits
2. Application to sequence classification

a. our quantum RNN architectures
b. sentiment analysis experiments



Recurrent Neural Networks (RNNs)

From Colah’s blog: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 



Angle Encoding for Words

 w = (Rx1, Rx2, Ry3, Ry4, Rx5, Rx6)                                                       

Angle encoding



Angle Encoding for Words

 w = (Rx1, Rx2, Ry3, Ry4, Rx5, Rx6)                                                       

classical embedding w quantum state |w>



qRNN Take One
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qRNN Take Two
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qRNN Take Two
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Probabilistic Output
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Probabilistic Output for Training
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Logits Output
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Neural Output
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The Task

● Sentiment analysis (Rotten Tomatoes dataset)
● 8,530 training examples (well balanced); 1,066 dev examples
● Simple binary classification task

1
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Baseline / Goal

● Goal is not to beat the s-o-t-a
● Goal (at this stage) is to be competitive with a classical vanilla RNN



Hybrid Toolkits



Hybrid Toolkit

● Requirements for classical simulation:
○ easily interfaces with PyTorch (or TensorFlow, JAX, …)
○ fast to train on real-world datasets
○ accommodates batching
○ essentially PyTorch ML library with complex number linear algebra



“Stairs” Architecture in Practice

● We added density matrices to TorchQuantum (for mixed states)
● Choice of PQC:



“Stairs” Architecture in Practice
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Example Experimental Settings

Affine

100D

optimiser = Adam
learning_rate = 0.001
batch_size = 200
emb_dropout = 0.5
early_stopping = True

A14
4 wires



Results on RT Test Set

4 wires Acc

Classical RNN 77.2

“Flat” 77.9

“Stairs” 79.5

Classical GRU 78.7

Classical LSTM 79.4

LSTM (Dai and Le, 2015) 79.7



Learning Curve

NVidia A30 GPU, PyTorch 1.12:

~5 secs / epoch for 1 wire (pure state)
~11 secs / epoch for 2 wires (pure state)
~14 secs / epoch for 4 wires (pure state)
~26 secs / epoch for 8 wires (pure state)



Where’s the (Potential) Advantage?

Non-linear mapping

Linear (unitary) transformations happen in this 
(potentially very large) space



So What’s the Current State of Quantum Hardware?



Future Work

● Apply the models to more tasks
○ sequence labelling, language modelling, translation, …

● Apply pre-training / fine-tuning paradigm
● Develop more hybrid architectures

○ based on CNNs (e.g. MERA-like), transformers, …
● Run on quantum hardware



The Oxford Hybrid NLP Team

Wenduan Xu, Konstantinos Meichanetzidis, Douglas Brown, Gabriel Matos,
Charlie London, Richie Yeung, Carys Harvey, Nikhil Khatri, Stephen Clark



The Future is (Almost) Here


